Cone convexity of measured set vector functions and vector optimization
نویسندگان
چکیده
منابع مشابه
On Vector Functions of Bounded Convexity
Let X be a normed linear space. We investigate properties of vector functions F : [a, b] → X of bounded convexity. In particular, we prove that such functions coincide with the delta-convex mappings admitting a Lipschitz control function, and that convexity K aF is equal to the variation of F ′ + on [a, b). As an application, we give a simple alternative proof of an unpublished result of the fi...
متن کاملOptimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone
In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.
متن کاملVector Optimization Problems and Generalized Vector Variational-Like Inequalities
In this paper, some properties of pseudoinvex functions, defined by means of limiting subdifferential, are discussed. Furthermore, the Minty vector variational-like inequality, the Stampacchia vector variational-like inequality, and the weak formulations of these two inequalities defined by means of limiting subdifferential are studied. Moreover, some relationships between the vector vari...
متن کاملCharacterizations of Convex Vector Functions and Optimization
In this paper we characterize nonsmooth convex vector functions by first and second order generalized derivatives. We also prove optimality conditions for convex vector problems involving nonsmooth data.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: RAIRO - Operations Research
سال: 1997
ISSN: 0399-0559,1290-3868
DOI: 10.1051/ro/1997310302111